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Abstract—Large language models (LLMs) excel at next-token
prediction, yet remain susceptible to conflating correlation with
causation. In this report, my aim is to revisit this limitation
through a compact reproduction of the CORR2CAUSE bench-
mark, which probes whether textual correlational evidence is suf-
ficient for causal inference. Using a 4-million-parameter BERT-
tiny fine-tuned on only 5 000 synthetic examples, I achieved 85 %
accuracy in-distribution, but accuracy collapses to near random
chance when causal direction is perturbed by a simple back-
door variable swap. The absence of degradation under a Caesar-
cipher variable rename reveals that the classifier depends on
token-level shortcuts rather than causal mechanisms. Introducing
lightweight causal rationalisation—training on one-sentence “be-
cause... therefore” explanations—recovers 15 percentage points
on the swapped set without harming baseline performance.
My findings reinforce prior work: robust causal reasoning in
LLMs will require objectives and data that embed explicit
intervention signals for reliable downstream decision-making in
real applications settings.

I. INTRODUCTION

A. Motivation: The Role of Causal Reasoning in Language
Understanding

In recent years, large language models (LLMs) have re-
defined the capabilities of natural language processing (NLP),
achieving state-of-the-art performance across a broad spectrum
of tasks. Despite their linguistic fluency and predictive power,
these models remain fundamentally grounded in statistical
association rather than causal understanding. This distinction
between recognising patterns in data and reasoning about
the underlying mechanisms that generate them is critical
for the development of intelligent systems that are robust,
interpretable, and capable of generalisation beyond observed
inputs.

Causal reasoning is the process of identifying cause-and-
effect relationships between variables or events. It enables
humans to make inferences not merely based on observed
co-occurrences, but on abstract structural relationships that
support counterfactual thinking and intervention. In contrast,
LLMs typically lack this ability, having been trained on
observational text collections without explicit foundation in
causal structure. This limitation becomes particularly salient
when models are applied in domains where understanding the
difference between correlation and causation is essential, such
as scientific discovery, medical diagnosis, and policy analysis.

B. Problem Statement: Limitations of Correlation-Based Mod-
els

The majority of contemporary LLMs, including well-known
architectures such as BERT [1] and GPT-4 [2], are optimised
for objectives that reward accurate prediction of the next token
or sentence-level classification. Although effective for many
NLP tasks, this optimisation does not require or encourage the
model to distinguish spurious associations from causal ones.
Consequently, models often internalise patterns that reflect bi-
ases or artifacts in the training data, rather than genuine causal
relationships. These models may exhibit strong performance
in-distribution, yet fail to generalise under distributional shifts
or adversarial inputs, scenarios where reliance on superficial
correlations becomes detrimental.

This challenge is not only theoretical, but has been empiri-
cally demonstrated. Recent work has highlighted the inability
of LLMs to generalise beyond memorised associations, raising
concerns about their robustness and the interpretability of
their outputs [3]. Understanding the limits of correlation-based
reasoning in these models, and identifying ways to bridge the
gap toward causal inference, remains a central concern in the
development of trustworthy Al

C. Objective and Contribution of This Study

To explore these questions, Jin et al. [4] proposed a novel
task known as CORR2CAUSE, designed to probe the causal
reasoning abilities of LLMs in a formal, knowledge-agnostic
setting. Unlike prior benchmarks that rely on empirical or com-
monsense knowledge, CORR2CAUSE focuses on whether a
model can infer causality from a set of correlational statements
by applying abstract rules derived from causal graph theory.
The dataset underpinning the task is constructed from directed
acyclic graphs (DAGs) and implemented using concepts such
as d-separation and Markov equivalence.

This study presents a focused analysis of the
CORR2CAUSE framework and its implications for evaluating
causal inference in LLMs. In addition to reviewing the
design and findings of Jin et al. [4], the study includes a
computational simulation that extends their experimental
setup. By replicating and lightly modifying their evaluation
using the publicly available CORR2CAUSE dataset, this
work seeks to further illuminate the boundary between
correlation-based prediction and true causal reasoning in
current language models.



II. LITERATURE REVIEW
A. Causal Inference in Natural Language Processing

The quest to endow NLP systems with the ability to reason
about cause and effect has accelerated in recent years. Feder
et al. [5] provide the first comprehensive survey of causal
inference in NLP, highlighting how potential-outcome and
structural causal-model (SCM) frameworks can be mapped
onto familiar language tasks such as sentiment attribution,
referral-chain analysis, and policy evaluation. Their taxonomy
clarifies three use cases relevant to this study: (i) causal
estimation (identifying causal effects from text), (ii) causal
prediction (forecasting outcomes under interventions), and
(iii) causal interpretation (explaining model decisions using
counterfactuals). Feder et al. argue that most language models
operate exclusively in the observational regime, a limitation
that motivates the CORR2CAUSE benchmark that can be
examined below.

B. Shortcut Bias and the “Stochastic Parrot” Critique

Early warnings that LLMs overfit superficial correlations
culminated in the “Stochastic Parrots” paper by Bender
et al. [3], which cautioned that large corpora encode so-
ciolinguistic artifacts rather than grounded causal structure.
Zecevic et al. extend this line of criticism in their “Causal
Parrots” study [6], empirically demonstrating that state-of-
the-art LLMs—despite remarkable fluency—fail to distinguish
genuine causal statements from reshuffled correlational vari-
ants. These findings establish a baseline concern: scale and
next-token objectives alone do not confer causal reasoning.

C. From Correlation to Causation: The CORR2CAUSE

Benchmark

Jin et al. address this shortcoming with the CORR2CAUSE
task [4]. They algorithmically generate directed acyclic graphs
(DAGS), sample correlational statements from the implied
joint distribution, and ask a model to infer the direction
of causality or detect the absence of a causal link. Cru-
cially, the benchmark includes out-of-distribution (OOD)
splits—VAR-RENAME, SHUFFLED-TRIPLES, and NEGATED-
PREMISE—that wipe out literal lexical cues while preserving
or breaking causal structure. Zero-shot experiments show that
17 popular LLMs hover near random guessing (33%), and al-
though fine-tuning boosts in-distribution accuracy above 90%,
OOD accuracy collapses, confirming reliance on spurious
lexical shortcuts. A companion paper by the same authors [7]
generalises the framework, connecting the inability to perform
do-calculus to systematic failures in commonsense causal
reasoning.

D. Mitigation Strategies: Invariant and Causal Rationalisa-
tion

Recent work explores methods to disentangle causal signals
from correlational noise. Chang et al.’s Invariant Rationalisa-
tion [8] introduces an adversarial objective that encourages
models to base predictions on invariant causal features while

hiding spurious ones. Zhang et al. propose Causal Ratio-
nalisation [9], in which models generate free text “because
...therefore” explanations that are then used as privileged
information to supervise a secondary classifier. Both studies
report improved OOD generalisation and offer an interpretable
window into model reasoning. Their techniques complement
CORR2CAUSE by providing tangible levers—counterfactual
augmentation, invariant representation learning, and causal
rationales, to move LLMs beyond surface statistics.

E. Positioning of the Present Work

Building on this literature, my study employs
CORR2CAUSE as an analytical lens to probe where a
lightweight encoder (BERT-TINY) succeeds and fails. By
contrasting in-distribution and VAR-RENAME performance, I
quantify the extent to which even a small model can memorise
lexical patterns yet remain insensitive to perturbations that
truly modify causal mechanisms. In Section V 1 further
apply insights from invariant and causal rationalisation to
diagnose and partially mitigate the observed shortcut bias,
thereby contributing an additional data point to the emerging
consensus that causal structure, not scale, is the bottleneck
for trustworthy LLM reasoning.

III. THE CORR2CAUSE BENCHMARK
A. Dataset Construction

CORR2CAUSE is generated synthetically to ensure ground-
truth causal structure while avoiding domain knowledge leak-
age. Following Jin et al. [4], the pipeline proceeds in three
steps:

1) Random DAG Sampling. A directed acyclic graph G =
(V,E) with |V| = 5-7 variables is sampled from the
uniform distribution over DAGs.

2) Correlational Statement Generation. For every ordered
pair (X,Y) of variables, the algorithm determines whether
X and Y are (i) dependent, (ii) conditionally dependent,
or (iii) d-separated given some subset Z C V \ {X,Y}.
Natural-language templates such as “X is correlated with
Y given Z” are filled to create premise sentences.

3) Label Assignment. The causal relation between (X,Y)
is read off the ground-truth DAG: CAUSE(X — Y),
CAUSED_BY (Y—X), BIDIR (X+«++Y") when a confounder
induces dependence in both directions, or NO_CAUSE when
no directed path exists.

Therefore, a single training example consists of k correlational
premises (k<10) and one of four causal labels.

B. Task Definition

Given the unordered set of premises S = {s1,...,8k},
a model must predict the directed causal relation between
the two query variables mentioned in every s;. The task
deliberately blocks shortcuts that rely on commonsense or
world knowledge: all variables are abstract placeholders (e.g.,
“A”, “B”) and the premises convey only statistical facts.



C. Evaluation Splits and Metrics

Jin et al. provide four evaluation splits:

ORIGINAL IID data drawn from the same distribution as
training.

VAR-RENAME Each variable name is rotated via a Caesar
cipher (A—Z, B—Y, ...), erasing direct lexical overlap with
training.

SHUFFLED-TRIPLES Triples (X,Y,Z) in the premises
are permuted, breaking dependencies while preserving
marginal word counts.

NEGATED-PREMISE A random subset of premises is negated
(“not correlated”), flipping dependence cues without alter-
ing the true causal label.

The primary metric is accuracy; macro-F; is reported as a
robustness check. Large performance gaps between ORIGINAL
and OOD splits signal reliance on spurious lexical patterns
rather than causal structure.

D. Reproduction Subset Used in This Study

To keep the Colab runtime under ten minutes I adopted a
lightweight subset as follows:

o Training 5000 examples
« Validation 1076 examples (ORIGINAL)
« Test 1162 examples (VAR-RENAME)'

In addition, I collapsed the four-way label into a binary
scheme (CAUSE vs. NO_CAUSE) to focus on the core question,
“Can the model detect any directed causal link?” This modi-
fication simplifies evaluation and surfaces the contribution of
lexical cues unconfounded by directionality errors. Section IV
details the model and training hyper-parameters applied to this
subset.**

IV. METHODOLOGY

This section details the simulation I carried out to engage, in
miniature, with the experimental logic of Jin et al. [4]. Rather
than replicate their full 6 billion parameter setup, I adopted
a lightweight encoder and data slice that still exposes the
same correlation—causation tension while fitting within a Colab
runtime budget of ~ 10 minutes.

A. Data Preparation

a) Subset selection: From the public
causalnlp/corr2cause repository I sampled 5000
training, 1076 validation (ORIGINAL) and 1162 test (VAR-
RENAME) examples (cf. Section I1I).2 The four-way label set
was collapsed to a binary decision (CAUSE vs. NO_CAUSE)
so that the evaluation focuses on presence of a directed link
rather than its directionality.

'T prioritise Var-Rename because it preserves ground-truth causality while
eliminating exact token overlap, thereby directly testing lexical-shortcut bias.
2Sampling is stratified to preserve the original class balance.

b) Tokenisation: 1 employed BERT-TINY’s uncased to-
kenizer, truncating every example to L.x = 512 tokens to
respect the model’s positional embedding limit. The raw inte-
ger label is duplicated into a 1labels field so that Hugging-
Face’s Trainer can compute loss automatically. Padding is
performed dynamically via DataCollatorWithPadding.

B. Model and Training Regime

a) Base encoder: 1 fine-tuned the publicly released
prajjwall/bert—-tiny checkpoint (2 transformer layers,
128-dim. hidden size, 4 attention heads; ~ 4 M parameters).

b) Optimiser and schedule: Training follows the standard
adamw optimiser with (81, 82) = (0.9,0.999) and weight
decay 1072, The learning rate is fixed at 2x 10~° over three
epochs, sufficient for convergence on the reduced corpus.

c) Batched training: Table 1 summarises the hyper-
parameters; they mirror Jin et al.’s default settings where
possible while scaling to my smaller hardware envelope.

TABLE I
KEY HYPER-PARAMETERS FOR THE SIMULATION.

Parameter Value
Max sequence length 512 tokens
Batch size (train / eval) 16/ 32
Learning rate 2x107°
Optimiser AdamW
Epochs 3

Gradient clipping 1.0
Random seed 42

Reported metric

Accuracy (macro-F; identical under binary labels)

C. Evaluation Protocol

I evaluated after each epoch on the ORIGINAL validation
split and reported the final metrics on the VAR-RENAME test
split. The latter renames every variable via a Caesar cipher,
eliminating verbatim lexical overlap but preserving causal
structure—the key stress test for shortcut reliance highlighted
by Jin et al. Accuracy is the primary measure; under my binary
collapse macro-F; equals Accuracy and is omitted for brevity.

D. Computational Environment

Experiments were ran on Google Colab Pro with a single
NVIDIA Tesla T4 (16-GB VRAM) and PyTorch 2.2. End-to-
end training including data download completed in .8 min-
utes, demonstrating that even resource constrained simulations
can probe the causal shortcomings identified in prior large
scale studies.

Section V analyses the resulting in-distribution and out-of-
distribution performance and situates my findings within the
broader causal-NLP literature.

V. RESULTS AND ANALYSIS
A. Quantitative Performance

Table II reports the final metrics after three epochs.?

3Validation (ORIGINAL) numbers are shown only for context; discussion
centres on the OOD test split.



TABLE II
ACCURACY AND CROSS-ENTROPY LOSS ON THE IN-DISTRIBUTION
(ORIGINAL) VALIDATION SET AND THE OOD (VAR-RENAME) TEST SPLIT.

Split Accuracy (%) Loss
ORIGINAL (val) 84.6 0.427
VAR-RENAME (test) 84.5 0.431

Key observation. Unlike the ~ 40-point accuracy collapse
reported by Jin ef al., the binary BERT-tiny model shows no
measurable drop when variable names are rotated, suggesting
the reliance on token-level statistics that survive a Caesar
cipher.

B. Visual Comparison

Figure 1 visualises the identical accuracies on the ORIGI-
NAL and VAR-RENAME splits.
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Fig. 1. Accuracy of BERT-tiny on in-distribution (ORIGINAL) versus OOD
(VAR-RENAME) data.

C. Training Dynamics

Figure 2 plots the train/loss curve exported from
Weights&Biases. Loss falls sharply during the first 200 steps
and stabilises near 0.39, consistent with mild over fitting but
without divergence.
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Fig. 2. Cross-entropy training loss over global steps.

D. Interpretation in Light of Jin et al.

a) Binary label collapse.: Merging CAUSE and
CAUSED_BY into one class removes directionality errors that
explain much of Jin et al.’s OOD degradation.

b) Surface-form robustness.: The Var-Rename cipher re-
tains global character statistics, so subword co-occurrence cues
still fire, masking any true robustness gap.

¢) Causal  insufficiency.: A back-door  swap
test—exchanging placeholders A <« B inside each
premise—drops accuracy to 49.8 % (random), confirming the
model has not learned asymmetric causal mechanisms.

E. Summary of Findings

e A 4-M-parameter encoder achieves ~ 85 % ID accuracy
with only 5 k examples, CORR2CAUSE is learnable with-
out scale.

o Near-identical OOD performance reveals dependence on
token patterns that survive the Caesar cipher.

« Counterfactual variable swapping collapses accuracy, sup-
porting Jin et al.’s thesis that correlation # causation for
today’s LMs.

The next section leverages these diagnostics to explore mit-
igation strategies rooted in invariant and causal rationalisation.

VI. CAUSAL DIAGNOSTICS & MITIGATION
A. Back-door Swap Test

To determine whether the classifier encodes asymmetric
mechanisms or merely memorises lexical patterns, I con-
structed a back-door swap set: for every premise I exchanged
the two variable placeholders, A +» B, leaving the causal
label unchanged. The swap removes any co-occurrence signal
that depends on the direction of the arrow in the hidden
DAG. Table III shows that precision decreases massively from
84.5 % to a nearly random 49.8 %, confirming that BERT-tiny’s
internal representation is insensitive to causal directionality.

TABLE III
EFFECT OF BACK-DOOR VARIABLE SWAPPING.

Condition Accuracy (%) A (pp)
Baseline (VAR-RENAME) 84.5 -
Back-door swap 49.8 —34.7

B. Causal Rationalisation Pilot

Inspired by Zhang et al.’s Causal Rationalisation (CR) [9],
I ran a lightweight pilot on 500 training examples:

1) Prompt GPT-3.5 with ‘‘Because <premises>,
therefore <label>.’’ to generate one-sentence
rationales.

2) Fine-tune a second BERT-tiny to predict the label solely
from the rationale, encouraging the model to exploit causal
structure rather than surface tokens.

The CR-enhanced classifier attains 64.3 % accuracy on
the back-door swap set—+14.5pp over the baseline while
matching baseline performance on the unperturbed test split.
Although modest, the gain indicates that exposing language
models to causal explanations can steer them away from
shortcut reliance.



C. Take-away

The diagnostics reveal that: (i) high headline accuracy can
coexist with causal blindness, and (ii) even a small dose of
rationale-based supervision improves robustness to direction-
breaking interventions.

VII. DISCUSSION AND IMPLICATIONS
A. What Have We Learned?

My reproduction confirms the central claim of Jin et al.:
correlational training objectives do not confer causal under-
standing. The absence of a preecision gap under a Caesar
cipher is not evidence of robustness; rather, it masks shortcut
dependence that becomes visible once I perturbed the direc-
tional information. In causal graph terms, the model captures
P(Y | X) patterns but fails to reconstruct P(Y | do(X)).

B. Broader Impact

These findings matter for safety-critical domains e.g
medicine, policy, science where interventions, not correlations,
drive decision making. They also align with the Stochas-
tic/Causal Parrots critique: scale and next-token loss are
insufficient for trustworthy reasoning. Methodologies such as
invariant risk minimisation, causal rationalisation, and coun-
terfactual data augmentation emerge as promising avenues to
inject mechanism-level signals.

C. Limitations

The study uses a tiny encoder and a binary label collapse;
real-world tasks require richer causal categories. The CR pilot
used covers only 500 examples and uses machine-generated
rationales whose fidelity is untested. Future work should
expand both model capacity and human- verified explanations.

VIII. CONCLUSION

This report revisited the CORR2CAUSE benchmark through
a resource-constrained simulation. A 4-M-parameter BERT-
tiny trained on just 5000 examples achieved 85% in-
distribution accuracy yet collapsed to chance once causal
direction was subtly perturbed, thereby reinforcing Jin et al.’s
thesis that current LLMs conflate correlation with causa-
tion. A small causal-rationalisation pilot recovered roughly
15 percentage points on the direction-swapped set, hinting
that explicit explanatory supervision can nudge models to-
ward mechanism-aware representations. Overall, the evidence
supports a growing consensus: advancing from fluent text
generation to reliable causal reasoning will require stepping
beyond purely observational objectives and embedding causal
principles directly into training data, model architectures, or
both.
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